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Asset Protection: Countering Theft

National Retail Security Survey
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and General
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Our Main Objectives

Track performance of AP teams

Optimize resources to prevent the
most theft




Understanding the Data
Store

it « 1,800+ stores

« 2015-2019

* Broken down into two main segments:

 Annual Store Data (annual sales,
shortage, store attributes, etc.)

Year « Weekly Department Data (weekly
Ex. 2018 theft statistics)

« Weekly data is collected as records
from individual AP teams

« Annual data is collected from aggregate
store records

Department

Ex. toys

Week

Theft Metric

Ex. Known loss




Exploratory Data Analysis

« Granular Data
« Missing Values
« Addressed through clustering
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Addressing Objective 1

Measure an AP Team’s performance

against itself

* Trend Extraction

Measure an AP Team's performance

against other similar stores

» Store segmentation

 Assess performance through theft
prevention within groups




How to easily interpret a boxplot

Data from above
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Measuring AP Team Performance: Trend
Extraction

* Trend is a general direction for the theft time series and could be a
good proxy for measuring the performance of Asset Protection
team against itself

« Taking empty package as an example

« If the trend is always going down with a good amount,
performance is improving

« Otherwise it stays constant or worsens

* Time series is often affected by seasonality and trend need to be
extracted first.




Measuring AP Team Performance: Trend

Extraction
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Measuring AP Team Performance: Trend
Extraction

* On average, the value of recorded emptypackage in 2018
decreased by 15 dollars on a weekly basis.

Store ep_2016 ep_2017 ep_2018 ep_2019

0 A 3.1079 1.8402 -14.7292 -6.0514

 Implication: Give a quantitative measure of reduced dollar amount

« Elasticity: This method can check quarter, semi-annual and annual
performance of Asset Protection team.

- Limitation: It requires high-quality and streamlined data collection
for at least 2 years in order to get rid of seasonality effect.




Tracking AP Team Performance

Evaluating AP team performance is tricky:

‘f\f Occurrence of crime can be erratic

Cannot set target theft metrics to

be achieved

Best approach: compare each store’s relative
performance against all other stores




Tracking AP Team Performance

[ Target has 1800+ Stores }

l l l

Riskiness of the
Neighborhood

Store segmentation is
necessary




Tracking AP Performance

Why does a particular store prevent more theft than another

store?
~ N
Y,
N

AP team performs well




1100

Explaining CAP Scores

900

800

CRIMECAST 49

Scores:
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CAP-Index
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Average Prevented Theft (across different CAP scores) -

CAP Risk
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CAP Risk
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Prevented Theft as % of Sales
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Stores Redistributed: from ‘excellent’to ‘very poor’
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What Next?

Empty
Packaging

Study best-performing stores

What are they doing differently?

Count Store
Updates Manager

Training
Programs

Team
members




Empty Packaging Over Time store performance
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Addressing Objective 2

Developing a way to optimize

resources for AP Teams

- Data-driven approach

3 Main Steps

» Clustering
* Time Series Forecasting
- Dashboards and Business Optimization




Clustering

Department

Ex. toys

Year
Ex. 2018

Week

Ex. 6

Theft Metric

Ex. Known loss

Store

Ex. ABX




Why Cluster?

percentage
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20%

1.0%

Most stores are
missing 55+ weekly

2 data points
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Theft
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Worst Case Scenario

Store: BSS
Department: 1

Theft per week

That’s a lot of weeks
with zeros!




Theft
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Department: 1 lot of variation
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Clustering Method Used.:
Gaussian Mixture Models

K-means (most common) GMM (most optimal)
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Attributes used for clustering

 Quarterly theft figures
- 13 quarters used

- Department shortage rates
« 26 departments




Clustering stores with similar theft patterns
solves the missing data problem

Average Weekly Theft by Cluster
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Although clusters 0 and 4 have similar theft
figures, their shortage rates differ across

departments

Departments shortage rates for Clusters 0 and 4
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Forecasting Theft: Predicting Future
Trends




Optimizing Resource Allocation: Forecasting Theft

200-

_A
o
’
— ——
—
e —
—

100 - Wﬂ» r]

2016 2017 2018 2019 2020
200-
175~

| Li
150 - l“ J
Yii
i
!
125 - llw

w m«i

1 1 |
2016 2L)1u U1S 2019 2020

175~

150 -

“ L‘ . \ 125-
M ’(‘ HIJ An..ﬁ'“"” ' I&Jn‘t"“"

100 -

-
W‘ ‘,ﬂt ’ u""";;..,n {I u"ﬂ -

Avg. Loss for different clusters

~ ~

< /)

|
pi |
200 - 'll . 1
[ ‘ { I‘ k‘f ﬁ fJ|
‘1'|~ ,th \’ "| ' PM, |i W ' H It | l
hﬁ I | : N '51 i
Wl *4\, Ik, J‘h 150- | b ” |
W Y b "l TR \“'M oy ol
' '.«3\ ’M H“ (g iwl H(',Jk‘dp FU ' ﬂ{ WA
2016 2017 2018 2019 2020 2016 2017 2018 2019 2020

l

i

f” q’ i

~ | M f ‘ 1 ] ‘-"{‘1 Joa
hl %J " | J} = M“r " N!“"a).?“q”’ 'ﬁ'

“,ﬁ ‘ {I'\ m

! ) ! 1 | | 1
2016 2017 2018 2019 2020 2016 2017 2018 2019 2020

-
-
/!




Optimizing Resource Allocation:
Forecasting Theft

Time Series Models:
automated the forecasting process

Different Model Families:
ARIMA, TBATS, hybrid, fourier terms, ensemble

Benchmark Metrics:
mean, naive, seasonal naive

Purpose: Update AP hours allocated to each department every
week




Good Forecastability

Dept X, 2: Forecasts of $ Loss
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Good Forecastability

Dept X, 2: Forecasts of $ Loss (zoomed in)
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High Variation
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Noisy/Little Structure

Dept Y, O: Forecasts of $ Loss (zoomed in)
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How do we improve theft forecasts?

Prediction intervals for forecasts

Data on special events to explain

sharp spikes/drops in S loss

Recalibrate forecasts: COVID-19




Optimizing Resource Allocation:
Results and Dashboards




AHM Department X sl

Target Asset Protection: Allocation of Resources

Week-on-Week % Change in Forecasted Theft Merchandise divisions with highest Forecasted Theft
SEASNL/OUTDR LIVING Choose Store
KITCHEN AHM
TOYS
Choose Week
SHOES

8/12/2019

PERFOR NCE
NIT APPAREL -0.2% $256.1 $252.3
DOMESTICS -1.1%
YOUNG CONTEMPOR.. -1.3%
KIDS APPAREL -4.1%
E M -26.4%
Actual Theft vs. Forecast model chosen: ensemble orecast Bias: -4.5% CTE)OYO;E Department
Actual Theft Dept X
400 B rorecast Allocation of Staff Hours
HOME ELECTRONICS I
STORAGE/UTI Y
BEAUTY I
200 - ]
- |
e
0 Forecast Start End of Test Data
Augl, 19 Sep 1, 19 Oct 1, 19 Nov 1, 19 Decl, 19 Jan1l, 20 Feb 1, 20 Mar 1, 20 Aprl, 20
Store: AHM (et TOAVE

Store: AHM
Total Staff Hours

XXX
RE |
0 5 10 15 ND
Decl,17 Mar 1, 18 Junl, 18 Sepl, 18 Decl, 18 lar 1, 19 Junl, 19 Sepl, 19 Jecl, 19 Hours FA

N 2




These 5 departments
should experience a
spike next week

Week-on-Week % Change in Forecasted Theft
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Allocate % of time in labor hours to areas

that are predicted to experience that portion
of theft

Allocation of Staff Hours

The week-on-week %
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This cluster’s forecast has a pretty good fit,
only slightly under-estimating the actual
theft

Actual Theft vs. Forecast model chosen: ensemble Forecast Bias: -4.5%
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BSS Department X

Target Asset Protection: Allocation of Resources

Week-on-Week % Change in Forecasted Theft
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These 5 departments
should experience a
spike next week

Week-on-Week % Change in Forecasted Theft
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Conclusions and Implementation

Measuring AP Team Performance

 Trend Extraction
* CAP Score Segmentation

AP Team Resource Optimization

* Clustering
» Time Series Forecasting
« Resource Allocation Dashboard

Implementation

 Corporate level
 Trickle-down to store level
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