RETAIL ASSET PROTECTION WEBINAR SERIES

Target: Using Analytics to Improve Asset Protection

Saurabh Bodas, Lin Chen, Jake Hill, Shelby Watson

Acknowledgements

- Ed Tonkon, Zebra Technologies
- Jess Pena, Target
- Tanner Coghill, Target
- Lisa Bruno, RILA
- Ellen Jackson, RILA
- **Dr. Tej Anand**, MSBA Faculty

ZEBRA

The University of Texas at Austin Texas McCombs MS Business Analytics McCombs School of Business

R RETAIL INDUSTRY LEADERS ASSOCIATION

RETAIL

ASSET PROTECTION

WEBINAR SERIES

Master of Science in Business Analytics (MSBA)

ACADEMIC BACKGROUND

- 40% ENGINEERING
- 19% BUSINESS
- 15% MATHEMATICS
- 14% ECONOMICS
- 9% COMPUTER SCIENCE
- 3% OTHER

- Ranked #3 in Business
 Analytics worldwide
- 10-month intensive STEMcertified program

Asset Protection: Countering Theft

Background and General Observations

Our Main Objectives

1

2

Track performance of AP teams

Optimize resources to prevent the most theft

R RETAIL INDUSTRY LEADERS ASSOCIATION

RETAIL

ASSET PROTECTION

WEBINAR SERIES

Understanding the Data

- 1,800+ stores
- 2015-2019
- Broken down into two main segments:
 - Annual Store Data (annual sales, shortage, store attributes, etc.)
 - Weekly Department Data (weekly theft statistics)
- Weekly data is collected as records from individual AP teams
- Annual data is collected from aggregate store records

Exploratory Data Analysis

- Granular Data
- Missing Values
- Addressed through clustering

Missing Week Distribution Across Stores

RETAIL INDUSTRY LEADERS ASSOCIATION

Addressing Objective 1

Measure an AP Team's performance against itself

Trend Extraction

Measure an AP Team's performance against other similar stores

- Store segmentation
- Assess performance through theft prevention within groups

How to easily interpret a boxplot

Measuring AP Team Performance: Trend Extraction

- Trend is a general direction for the theft time series and could be a good proxy for measuring the performance of Asset Protection team against itself
 - Taking empty package as an example
 - If the trend is always going down with a good amount, performance is improving
 - Otherwise it stays constant or worsens
- Time series is often affected by seasonality and trend need to be extracted first.

Measuring AP Team Performance: Trend Extraction

Original Data

Measuring AP Team Performance: Trend Extraction

• On average, the value of recorded emptypackage in 2018 decreased by 15 dollars on a weekly basis.

	Store	ep_2016	ep_2017	ep_2018	ep_2019
0	А	3.1079	1.8402	-14.7292	-6.0514

- Implication: Give a quantitative measure of reduced dollar amount
- Elasticity: This method can check quarter, semi-annual and annual performance of Asset Protection team.
- Limitation: It requires high-quality and streamlined data collection for at least 2 years in order to get rid of seasonality effect.

Tracking AP Team Performance

 $|\mathcal{N}|$

Evaluating AP team performance is tricky:

Occurrence of crime can be erratic

Cannot set target theft metrics to be achieved

Best approach: <u>compare each store's relative</u> <u>performance against all other stores</u>

Tracking AP Performance

Why does a particular store <u>prevent more theft</u> than another store?

More Square Footage

Riskier Neighborhood

AP team performs well

RETAIL ASSET PROTECTION WEBINAR SERIES

Explaining CAP Scores

Each store receives a custom score between **0 - 2000**

RETAIL Asset protection Webinar series

RETAIL INDUSTRY LEADERS ASSOCIATION

Prevented Theft as % of Sales

Stores Redistributed: from 'excellent' to 'very poor'

What Next?

Study best-performing stores

RETAIL **ASSET PROTECTION** WEBINAR SERIES

mean daily sales

Total Prevented Theft

Addressing Objective 2

Developing a way to optimize resources for AP Teams

Data-driven approach

3 Main Steps

- Clustering
- Time Series Forecasting
- Dashboards and Business Optimization

Worst Case Scenario

Store: BSS Department: 1

Clustering Method Used: Gaussian Mixture Models

K-means (most common)

GMM (most optimal)

Attributes used for clustering

- Quarterly theft figures
 - 13 quarters used
- Department shortage rates
 - 26 departments

Clustering stores with similar theft patterns solves the missing data problem

Although clusters 0 and 4 have similar theft figures, their shortage rates differ across departments

Forecasting Theft: Predicting Future Trends

Optimizing Resource Allocation: Forecasting Theft

Optimizing Resource Allocation: Forecasting Theft

700

5

3

<u>Different Model Families:</u> ARIMA, TBATS, hybrid, fourier terms, ensemble

Benchmark Metrics: mean, naïve, seasonal naïve

Purpose: Update AP hours allocated to each department every week

Good Forecastability

Dept X, 2: Forecasts of \$ Loss

Good Forecastability

High Variation

Dept Y, 0: Forecasts of \$ Loss

Noisy/Little Structure

How do we improve theft forecasts?

Prediction intervals for forecasts

Data on **special events** to explain sharp spikes/drops in \$ loss

2

3

Recalibrate forecasts: COVID-19

- weekly promotions
- anomalous store operations
- holidays
- weather forecasts

RETAIL INDUSTRY LEADERS ASSOCIATION

Optimizing Resource Allocation: Results and Dashboards

RETAIL INDUSTRY LEADERS ASSOCIATION

AHM Department X

RETAIL

LEADERS ASSOCIATION

RETAIL ASSET PROTECTION WEBINAR SERIES

Allocate % of time in labor hours to areas that are predicted to experience that portion of theft

The week-on-week % change from the previous slide is reflected here

RETAIL

ASSET PROTECTION

WEBINAR SERIES

This cluster's forecast has a pretty good fit, only slightly under-estimating the actual theft

A positive long term trend may suggest [...]

BSS Department X

Target Asset Protection: Allocation of Resources

RETAIL

LEADERS ASSOCIATION

RETAIL ASSET PROTECTION WEBINAR SERIES

Conclusions and Implementation

Measuring AP Team Performance

- Trend Extraction
- CAP Score Segmentation

AP Team Resource Optimization

- Clustering
- Time Series Forecasting
- Resource Allocation Dashboard

Implementation

- Corporate level
- Trickle-down to store level

Contact Information

Saurabh Bodas	 <u>Saurabh.bodas@utexas.edu</u> <u>linkedin.com/in/saurabh-bodas</u>
Lin Chen	 jacob.hill@utexas.edu linkedin.com/in/jake-hill/
Jake Hill	 <u>cllin.chen@utexas.edu</u> <u>linkedin.com/in/linchenkaren/</u>
Shelby Watson	 <u>shelby.Watson@utexas.edu</u> <u>linkedin.com/in/shelbyewatson/</u>

