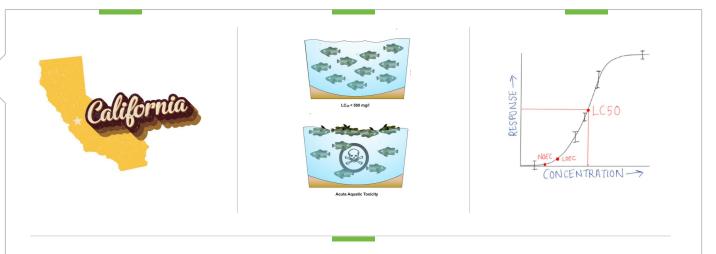

The Paradox of Overclassification and Animal Testing

Cliff notes on the California LC50 Test, what it means for retailers and brands—and what's happening to change an outdated approach


May 18, 2022

California Aquatox

1. Background and introduction

Waste is hazardous by aquatic toxicity¹ if a 96-hour LC₅₀ is less than 500 mg/liter.

96-hour LC₅₀ < 500 mg/l = acute aquatic toxicity

1. Background and introduction

22 CCR § 66261.24. Characteristic of Toxicity.						
	Oral	Dermal	Inhalation	Aquatic		
Threshold	2.5 g / kg	4.3 g / kg	10k ppm	0.5. g /kg		
Calculation okay?	Υ	Υ	Υ	N		

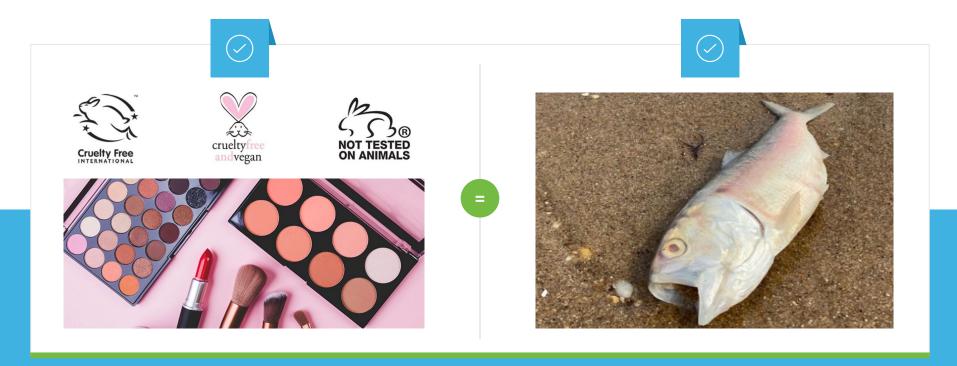
Is it hazardous waste or isn't it?

If my waste is a detergent or soap and I have results that show it only fails the aquatic toxicity test, can I ignore those results and handle it as nonhazardous waste?

There is no waiver or exclusion from the aquatic toxicity testing requirement, nor is there any rule or regulation that allows a generator to ignore a result obtained from performing the aquatic fish bioassay test.

If you have aquatic toxicity test results from your waste detergent or soap that shows

2. How is this measured today?



Static Acute Bioassay a.k.a. "Fish kill test"

"Ten fish are then added to each test tank and monitored for 96 hours. Water quality parameters, such as dissolved oxygen, pH, and temperature and mortalities are recorded daily. The final fish survival rate is used to determine whether or not the sample passes state criteria for non-hazardous waste, namely an LC50 greater than 500 mg/l (in other words, the concentration necessary to kill half of the exposed fish must be greater than 500 mg/l)"

3. Why does this matter? Consumer choice and demand

3. Why does this matter? Cost of testing & the cost of over classification

A compliance framework not designed for retailers.

A. The cost of testing

	Multiple-Concentration			Single-Concentration			
Test Method and Species	N	Range (2016 \$)	Average (2016 \$)	N	Range (2016 \$)	Average (2016 \$)	
		Acute					
EPA Method 2000.0 - Cyprinodon variegatus	2	\$389 - \$431	\$410	4	\$273 - \$442	\$347	
EPA Method 2000.0 - Oncorhynchus mykiss	2	\$389 - \$431	\$410	4	\$273 - \$442	\$347	
EPA Method 2000.0 - Pimephales promelas	11	\$237 - \$841	\$554	19	\$189 - \$631	\$370	
EPA Method 2002.0 - Ceriodaphnia dubia	9	\$289 - \$841	\$621	12	\$189 - \$631	\$391	
EPA Method 2004.0 - Cyprinodon variegatus	3	\$526 - \$789	\$701	1	\$315	\$315	
EPA Method 2006.0 - Menidia beryllina	6	\$410 - \$894	\$721	4	\$205 - \$670	\$442	
EPA Method 2006.0 - Menidia	2	\$789	\$789	0	ND	ND	
EPA Method 2006.0 - Menidia peninsulae	2	\$789	\$789	0	ND	ND	
EPA Method 2007.0 - Mysidopsis bahia	5	\$526 - \$815	\$710	3	\$315 - \$526	\$403	
EPA Method 2019.0 - Oncorhynchus mykiss	5	\$421 - \$1,008	\$748	11	\$273 - \$473	\$407	
EPA Method 2019.0 - Salvelinus fontinalis	2	\$789	\$789		ND	ND	
EPA Method 2021.0 - Daphnia magna	2	\$473 - \$789	\$631	8	\$263 - \$591	\$422	
EPA Method 2021.0 - Daphnia pulex	1	\$946	\$946	1	\$710	\$710	
N/A - Atherinops affinis	4	\$415 - \$894	\$689	4	\$210 - \$670	\$444	
N/A - Holmesimysis costata	2	\$789	\$789		ND	ND	

B. Toxic = hazardous = more costs

C. Regulatory burden

- Special waste management / handling fees
- Chargebacks
- Reduced recyclability
- Extra regulatory responsibility
- Your product is now "in scope" for all regulatory obligations e.g. reporting, training, handling
- Compliance risk i.e. exposure x potential hazard increases significantly

4. What can be done? Calculating aquatic toxicity

What if I told you that you do not have to kill fish to determine aquatic toxicity?

4. What can be done? Calculating aquatic toxicity

Washington "book designation"

	TOX	KIC CATEGOR	RY TABLE	
Toxic Category	Fish LC ₅₀ (mg/L) ^b	Oral Rat LD ₅₀ (mg/kg)	Inhalation Rat LC ₅₀ (mg/L) ^c	Dermal Rabbit LD ₅₀ (mg/kg)
X	< 0.01	< 0.5	< 0.02	<2
A	0.01 - < 0.1	0.5 - < 5	0.02 - < 0.2	2 - < 20
В	0.1 - <1	5 - < 50	0.2 - <2	20 - < 200
C	1 - < 10	50 - < 500	2 - < 20	200 - < 2000
D	10 - 100	500 - 5000	20 - 200	2000 - 20,000

- a These four test endpoints are defined in WAC 173-303-040.
- b Fish LC₅₀ data must be derived from an exposure period greater than or equal to twenty-four hours. A hierarchy of species LC₅₀ data should be used that includes (in decreasing order of preference) salmonids, fathead minnows, and other fish species.
- c Inhalation Rat LC₅₀ data must be derived from an exposure period greater than or equal to one hour.

Equivalent	∑X% +	∑A%	+	∑B%	+	∑C%	+	∑D%
Concentration (%) =	1	10		100		1000		10,000

EU Technical Guidance for HP 14 Ecotoxic

Summation Method (mixtures)

Sum of the concentrations (in %) of ingredients classified as:	Mixture is classified as:		
Acute 1 x M-factor ≥ 25%	Acute 1		

Additivity Method (sub-mixtures)

$$\frac{\sum Ci}{L(E)C_{50_{m}}} = \sum_{n} \frac{Ci}{L(E)C_{50_{i}}}$$

where:

C_i = concentration of ingredient i (weight percentage);

 $L(E)C_{50} = LC_{50}$ or EC_{50} for ingredient i, in (mg/l);

n = number of ingredients, and i is running from 1 to n;

 $L(E)C_{50}$ = $L(E) C_{50}$ of the part of the mixture with test data;

4. What can stakeholders do? Computational decision-making

Classify using computational mechanisms to deliver accurate California waste classifications

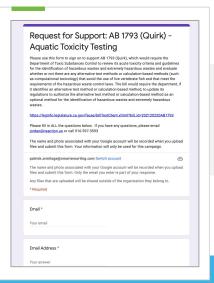

```
"50-00-0": [
  "acute tox dermal 3",
  "carc 1b",
  "muta 2",
  "acute tox inhal 3",
  "acute tox oral 3",
  "skin corr 1b",
  "skin sens 1"
```

4. What can stakeholders do? Growing & increasing support

Smarter Sorting + National Stewardship Action Council + California State Assembly + Retailers + Physicians Committee for Responsible Medicine

Technical guidance on the current regulations, highlighting opportunities to adopt frameworks from other authorities, providing data and research to support a computational approach to aquatic toxicity.

Passed through a vote on March 08, SB 1739 Committee on Environmental Safety and Toxic Materials



Assembly Member Bill Quirk, Chair of the Environmental Safety and Toxic Materials Committee

4. What can stakeholders do?

Two actions:

- 1. Use and submit the letter template
- 2. Sign the Floor Alert

Overall support the efforts of bill sponsors (NSAC) in assuring DTSC staff (technical, legislative, and board) that computational toxicity works

Make sure the committee hears from retailers

Sign the petition, link to form:

https://docs.google.com/forms/d/e/ 1FAIpQLSelM8Wt_Qi4RbxUrB7pvOtZ C5Aal1AldUL00QFEl4KwXrxfVA/viewf orm

Questions and follow ups

AJ Kenny

Director of Regulations Smarter Sorting

aj@smartersorting.com

NSAC Team

The team at the National Stewardship Action Council

Heidi Sanborn, Executive Director Jordan Wells, Advocacy Director

